Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 8-13, 2024 Jan 10.
Article in Chinese | MEDLINE | ID: mdl-38171552

ABSTRACT

OBJECTIVE: To explore the cause of inconsistency between the results of trisomy 7 by expanded non-invasive prenatal testing (NIPT-PLUS) and trisomy 18 by prenatal diagnosis. METHODS: A pregnant woman who received genetic counseling at Jiaozuo Maternal and Child Health Care Hospital on July 5, 2020 was selected as the study subject. NIPT-PLUS, systematic ultrasound and interventional prenatal testing were carried out. The middle segment and root of umbilical cord, center and edge of the maternal and fatal surface of the placenta were sampled for the validation by copy number variation sequencing (CNV-seq). RESULTS: The result of NIPT-PLUS indicated that the fetus has trisomy 7. Systematic ultrasound has shown multiple malformations including atrioventricular septal defect, horseshoe kidney, and rocker-bottom feet. However, QF-PCR, chromosomal karyotyping analysis, and CNV-seq of amniotic fluid samples all showed that the fetus was trisomy 18. Validation using multiple placental samples confirmed that the middle segment of the umbilical cord contains trisomy 18, the center of the placenta contained trisomy 7, and other placental sites were mosaicism for trisomy 7 and trisomy 18. Notably, the ratio of trisomy 18 became lower further away from the umbilical cord. CONCLUSION: The false positive results of trisomy 7 and false negative trisomy 18 by NIPT-PLUS was probably due to the existence of placental mosaicism. Strict prenatal diagnosis is required needed aneuploidy is detected by NIPT-PLUS to exclude the influence of placental mosaicisms.


Subject(s)
Chromosome Disorders , Trisomy , Child , Pregnancy , Female , Humans , Trisomy/diagnosis , Trisomy/genetics , Trisomy 18 Syndrome/diagnosis , Trisomy 18 Syndrome/genetics , Placenta , DNA Copy Number Variations , Prenatal Diagnosis/methods , Chromosome Disorders/genetics , Aneuploidy
2.
Biosci Rep ; 40(6)2020 06 26.
Article in English | MEDLINE | ID: mdl-32495835

ABSTRACT

Childhood asthma is one of the most common chronic childhood diseases. Platelet-derived growth factor BB (PDGF-BB) induced airway smooth muscle cell (ASMC) proliferation and migration are involved in the pathogenesis of asthma. Galectin-1 (Gal-1) is a glycan-binding protein that has been found to be involved in the progression of asthma. However, the mechanism remains unclear. In the current study, we aimed to evaluate the role of Gal-1 in regulating the phenotype switching of ASMCs, which is an important mechanism in the pathogenesis of asthma. Our results showed that Gal-1 was markedly down-regulated in the samples from asthma patients. In vitro study also proved that Gal-1 expression was decreased in PDGF-BB-stimulated ASMCs. In addition, Gal-1 overexpression significantly inhibited PDGF-BB-induced ASMCs proliferation and migration, while Gal-1 knockdown exhibits opposite effects of Gal-1 overexpression. The PDGF-BB-caused reductions in expressions of α-smooth muscle actin (α-SMA), specific muscle myosin heavy chain (SM-MHC), and calponin were elevated by Gal-1 overexpression, but were deteriorated by Gal-1 knockdown in ASMCs. Furthermore, overexpression of Gal-1 inhibited PDGF-BB-stimulated PI3K/Akt activation in ASMCs. Notably, treatment with IGF-1, an activator of PI3K, reversed the effects of Gal-1 on ASMCs proliferation, migration, and phenotype switching. In conclusion, these findings showed that Gal-1 exerted inhibitory effects on PDGF-BB-stimulated proliferation, migration, and phenotype switching of ASMCs via inhibiting the PI3K/Akt signaling pathway. Thus, Gal-1 might be a promising target for the treatment of asthma.


Subject(s)
Airway Remodeling , Asthma/enzymology , Cell Movement , Cell Proliferation , Galectin 1/metabolism , Lung/enzymology , Muscle, Smooth/enzymology , Myocytes, Smooth Muscle/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Airway Remodeling/drug effects , Asthma/pathology , Asthma/physiopathology , Becaplermin/pharmacology , Case-Control Studies , Cell Movement/drug effects , Cell Proliferation/drug effects , Child , Child, Preschool , Down-Regulation , Female , Galectin 1/genetics , Humans , Lung/drug effects , Lung/pathology , Lung/physiopathology , Male , Muscle, Smooth/drug effects , Muscle, Smooth/pathology , Muscle, Smooth/physiopathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Phenotype , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...